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Abstract

As one of the most significant models, the uniform recursive tree (URT)
has found many applications in a variety of fields. In this paper, we study
rigorously the structural features and spectral properties of the adjacency
matrix for a family of deterministic uniform recursive trees (DURTs) that
are deterministic versions of URT. Firstly, from the perspective of complex
networks, we investigate analytically the main structural characteristics of
DURTs, and obtain the accurate solutions for these properties, which include
degree distribution, average path length, distribution of node betweenness and
degree correlations. Then we determine the complete eigenvalues and their
corresponding eigenvectors of the adjacency matrix for DURTs. Our research
may shed light on a better understanding of the features for URT. Also, the
analytical methods used here are capable of being extended to many other
deterministic networks, making the precise computation of their properties
(especially the full spectrum characteristics) possible.

PACS numbers: 89.75.Hc, 02.10.Yn, 02.10.Ud, 89.75.Fb

1. Introduction

Structural characterization is very significant for studies in the field of complex networks that
have become a focus of attention for the scientific community [1–3]. In the past decade,
great efforts have been dedicated to characterizing and understanding the structural properties
of real networks [4], including degree distribution, average path length (APL), betweenness,
degree correlations, fractality and so forth. These measures have a profound effect on various
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dynamical processes taking place on top of complex networks [5], such as robustness [6–9],
epidemic spreading [10, 11], synchronization [12–15] and games [16].

The foregoing measurements focus on direct measurements of structural properties of
networks, and play an important role in understanding network complexity [17]. Aside from
these measurements there exists a vast literature related to the spectrum of complex networks
[18–21], which provides useful insight into the relevant structural properties of and dynamical
processes on graphs. In contrast to the fact that structural features capture the static topological
properties of complex networks, spectra (eigenvalues and eigenvectors) of adjacency matrix
provide global measures of the characterization for network topology. In a variety of dynamical
processes, the impact of the network structure is encoded in the spectra of its adjacency matrix,
especially the extreme eigenvalues and their corresponding eigenvectors. For example, in the
dynamical model for the spreading of infections, the epidemic thresholds are governed by
the largest eigenvalue of the adjacency matrix [22, 23], which also plays a fundamental role
in determining critical couplings for the onset of coherent behavior [24]. In addition, recent
research showed that in the susceptible-infected model of epidemic outbreaks on complex
networks, the eigenvectors corresponding to the largest eigenvalue are related to the spreading
power of network nodes [25]. In spite of the importance of the eigenvalues and eigenvectors
of the adjacency matrix, however, until now, most analysis of the spectra has been confined
to approximate or numerical methods, the latter of which is prohibitively time and memory
consuming for large-scale networks [18].

On the other hand, in order to mimic real systems and study their structural properties,
a great number of network models have been presented [1–3], among which the uniform
recursive tree (URT) is perhaps one of the most widely studied models [26]. It is now
established that the URT, together with the famous Erdös–Rényi model [27], constitutes the
two principal models [28, 29] of random graphs. As one of the simplest trees, the URT is
constructed as follows: start with a single node, at each time step, we attach a new node to an
existing node selected at random. It has found many important applications in various areas.
For example, it has been suggested as models for the spread of epidemics [30], the family
trees of preserved copies of ancient or medieval texts [31], chain letter and pyramid schemes
[32], to name but a few.

Recently, a class of deterministically growing tree-like networks have been proposed to
describe real-world systems whose number of nodes increases exponentially with time [33].
We call them deterministic uniform recursive trees (DURTs), since they are deterministic
versions of URT. This kind of deterministic models has received considerable attention from
the scientific communities and has turned out to be a useful tool [34–51]. Although uniform
recursive tree is well understood [26, 28–31, 52, 53], relatively less is known about the
structural and other nature of the DURTs [33].

In this paper, from the viewpoint of complex networks, we offer a comprehensive
analysis of the deterministic uniform recursive trees [33]. We firstly determine exactly
relevant structural properties of the DURTs, including degree distribution, average path length,
betweenness distribution and degree correlations. Then, using methods of graph theory and
algebra, we calculate all the eigenvalues and eigenvectors of the adjacency matrix, which are
obtained through the recurrence relations derived from the very structure of the DURTs.

2. The deterministic uniform recursive trees

The deterministic uniform recursive trees under consideration are constructed in an iterative
way [33]. We denote the trees (networks) after t steps by Ut (t � 0). Then the networks are
built as follows. For t = 0, U0 is an edge connecting two nodes. For t � 1, Ut is obtained from
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Figure 1. Illustration of a deterministic uniform recursive tree for the special case of m = 1,
showing the first several steps of growth process.

Ut−1. We attach m new nodes to each node in Ut−1. This iterative process is repeated, then
we obtain a class of deterministically growing trees with an exponential decreasing spectrum
of degrees as shown below. The definition of the model for a particular case of m = 1 is
illustrated schematically in figure 1.

We first compute the total number of nodes Nt and the total number of edges Et in Ut .
Let nv(t) and ne(t) denote the numbers of nodes and edges created at step t, respectively.
Then, nv(0) = N0 = 2 and ne(0) = 1. By construction, we have nv(t) = mNt−1, thus
Nt = nv(t) + Nt−1 = (1 + m)Nt−1. Considering the initial condition N0 = 2, we obtain
Nt = 2(1 + m)t and nv(t) = 2m(1 + m)t−1. Thus, Et = Nt − 1 = 2(1 + m)t − 1. Note
that at arbitrary step t � 1, the addition of each new node leads to only new edge, so
ne(t) = nv(t) = 2m(1 + m)t−1 for all t � 1.

3. Structural properties

In this section, we investigate four important structural properties of Ut , including degree
distribution, average path length, betweenness distribution and degree correlations.

3.1. Degree distribution

By definition, the degree of a node i is the number of edges connected to i. The degree
distribution P(k) of a network is the probability that a randomly selected node has exactly k
edges. Let ki(t) denote the degree of node i at step t. If node i is added to the network at step
ti , then by construction, ki(ti) = 1. In each of the subsequent time steps, m new nodes will be
created connected to i. Thus the degree ki(t) of node i satisfies the relation

ki(t) = ki(t − 1) + m. (1)

Considering the initial condition ki(ti) = 1, we obtain

ki(t) = 1 + m(t − ti). (2)

Since the degree of each node has been obtained explicitly as in equation (2), we can get the
degree distribution via its cumulative distribution [3]

Pcum(k) =
∞∑

k′=k

P (k′), (3)
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which is the probability that the degree is greater than or equal to k. An important advantage of
the cumulative distribution is that it can reduce the noise in the tail of probability distribution.
Moreover, for some networks whose degree distributions have exponential tails: P(k̃) ∼ e−k̃/κ ,
the cumulative distribution also has an exponential expression with the same exponent:

Pcum(k̃) =
∞∑

k′=k̃

P (k′) ∼
∞∑

k′=k̃

e−k′/κ ∼ e−k̃/κ . (4)

This makes exponential distributions particularly easy to detect experimentally, by plotting
the corresponding cumulative distributions on semilogarithmic scales.

Using equation (2), we have Pcum(k) = ∑∞
k′=k P (k′) = P

(
t ′ � τ = t − k−1

m

)
. Hence

Pcum(k) =
τ∑

t ′=0

nv(t
′)

Nt

= 2(1 + m)t−
k−1
m

2(1 + m)t
= (1 + m)−

k−1
m , (5)

which decays exponentially with k. Note that when m > 1, the possible degrees are not
arbitrary, equation (5) holds only for those k being equal to 1 modulo m. Thus the DURTs
are a family of exponential networks, which have a similar form of degree distribution as its
stochastic version—the URT [29].

3.2. Average path length

Average path length means the minimum number of edges connecting a pair of nodes, averaged
over all node pairs. It is defined to be

d̄ t = St

Nt (Nt − 1)/2
, (6)

where St denotes the sum of the total distances between two nodes over all pairs, that is

St =
∑
i �=j

di,j , (7)

where di,j is the shortest distance between node i and j . Note that in equation (7), for a couple
of nodes i and j (i �= j), we only count di,j or dj,i , not both.

Let �t
new and �t

old represent the sets of nodes created at step t or earlier, respectively.
Then one can write the sum over all shortest paths St in network Ut as

St =
∑

i∈�t
new,j∈�t

old

di,j +
∑

i∈�t
new,j∈�t

new

di,j +
∑

i∈�t
old,j∈�t

old

di,j , (8)

where the third term is exactly St−1, i.e.,∑
i∈�t

old,j∈�t
old

di,j = St−1. (9)

By construction, we can obtain the following relations for the first and second terms on the
right-hand side of equation (8):∑

i∈�t
new,j∈�t

old

di,j = m
(
N2

t−1 + 2St−1
)
, (10)

∑
i∈�t

new,j∈�t
new

di,j = m2St−1 + mNt−1(mNt−1 − 1). (11)

The term mNt−1(mNt−1 − 1) in equation (11) pops out from counting: each path connecting
two new points comes from a path connecting two old points by adding two edges, is by
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increasing the length by 2. As there are 1
2mNt−1(mNt−1 − 1) pairs of new points, the total

increase in length is mNt−1(mNt−1 − 1).
Substituting equations (9)–(11) into equation (8) and considering Nt = 2(1 + m)t , the

total distance is obtained to be

St = (1 + m)2St−1 + m(1 + m)N2
t−1 − mNt−1

= (1 + m)2t S0 + m(1 + m)

t−1∑
i=0

(1 + m)2(t−1−i)N2
i − m

t−1∑
i=0

(1 + m)2(t−1−i)Ni

= (4mt + m − 1)(1 + m)2t−1 + 2(1 + m)t−1. (12)

Inserting equation (12) into (6), we have

d̄ t = 2[(4mt + m − 1)(1 + m)2t−1 + 2(1 + m)t−1]

2(1 + m)t [2(1 + m)t − 1]

= (1 + m)t(4mt + m − 1) + 2

2(1 + m)t+1 − (1 + m)
. (13)

In the infinite network size limit (t → ∞),

d̄ t
∼= 2m

m + 1
t +

m − 1

2(m + 1)

= ln Nt

ln(m + 1)
− ln 2

ln(m + 1)
+

m − 1

2(m + 1)
, (14)

which means that the average path length shows a logarithmic scaling with the size of the
network, indicating a similar small-world behavior as the URT [53] and the Watts–Strogatz
(WS) model [54].

3.3. Betweenness distribution

Betweenness of a node is the accumulated fraction of the total number of shortest paths going
through the given node over all node pairs [55, 56]. More precisely, the betweenness of a node
i is

bi =
∑

j �=i �=k

σjk(i)

σjk

, (15)

where σjk is the total number of the shortest path between node j and k, and σjk(i) is the
number of the shortest path running through node i.

Since for a tree, there is a unique shortest path between each pair of nodes [57–61]. Thus
the betweenness of a node is simply given by the number of distinct shortest paths passing
through the node. Then in Ut , the betweenness of a τ -generation-old node v, which is created
at step t − τ + 1, denoted as bt (τ ) becomes

bt (τ ) = �τ
t

[
Nt − (

�τ
t + 1

)]
+

�τ
t (�

τ
t − 1)

2
−

τ−1∑
h=2

m
�h

t

(
�h

t + 1
)

2
, (16)

where �τ
t denotes the total number of descendants of node v at time t, where the descendants

of a node are its children, its children’s children and so on. Note that the descendants of node
v exclude v itself. The first term in equation (16) counts the shortest paths from descendants
of v to other vertices. The second term accounts for the shortest paths between descendants
of v. The third term describes the shortest paths between descendants of v that do not pass
through v.
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To find bt (τ ), it is necessary to explicitly determine the descendants �τ
t of node v, which

is related to that of v′s children via [59, 60]

�τ
t =

τ−1∑
j=1

m
(
�

j
t + 1

)
. (17)

Using �1
t = 0, we can solve equation (17) inductively,

�τ
t = (1 + m)τ−1 − 1. (18)

Substituting the result of equation (18) and Nt = 2(1 + m)t into equation (16), we have

bt (τ ) = 2(1 + m)t+τ−1 − 2(1 + m)t − (m + 3)[(1 + m)2(τ−1) − 1]

2(m + 2)
, (19)

which is approximately equal to 2(m + 1)t+τ−1 for large τ . Then the cumulative betweenness
distribution is

Pcum(b) =
∑

μ�t−τ+1

nv(μ)

Nt

= (1 + m)t+1

(1 + m)t+τ
≈ Nt

b
∼ b−1, (20)

which shows that the betweenness distribution exhibits a power-law behavior with exponent
γb = 2, the same scaling has been also obtained for the URT [52] and the m = 1 case
of the Barabási–Albert (BA) model [62] describing a random scale-free treelike network
[57, 58]. Therefore, power-law betweenness distribution is not an exclusive property of
scale-free networks.

3.4. Degree correlations

An interesting quantity related to degree correlations [63] is the average degree of the nearest
neighbors for nodes with degree k, denoted as knn(k) [64–66]. When knn(k) increases with k,
it means that nodes have a tendency to connect to nodes with a similar or larger degree. In
this case the network is defined as assortative [67]. In contrast, if knn(k) is decreasing with k,
which implies that nodes of large degree are likely to have near neighbors with small degree,
then the network is said to be disassortative. If correlations are absent, knn(k) = const.

For Ut , we can exactly calculate knn(k). Except for the initial two nodes generated at
step 0, no nodes born at the same step, which have the same degree, will be linked to each
other. All links to nodes with larger degree are made at the creation step, and then links to
nodes with smaller degree are made at each subsequent step. This results in the expression for
k = 1 + m(t − ti) (ti � 1)

knn(k) = 1

nv(ti)k(ti , t)

[
t ′i=ti−1∑

t ′i=0

mnv(t
′
i )k(t ′i , t) +

t ′i=t∑
t ′i=ti+1

mnv(ti)k(t ′i , t)

]
, (21)

where k(ti, t) represents the degree of a node at step t, which was generated at step ti . Here
the first sum on the right-hand side accounts for the links made to nodes with larger degree
(i.e. t ′i < ti) when the node was generated at ti . The second sum describes the links made to
the current smallest degree nodes at each step t ′i > ti .

After some algebraic manipulations, equation (21) is simplified to

knn(k) = 2mt + 2 − 2mti + m

1 + m(t − ti)
+

m2(t − ti − 1)(t − ti)

2[1 + m(t − ti)]
− (1 + m)1−ti

1 + m(t − ti)
. (22)

6
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Writing equation (22) in terms of k, it is straightforward to obtain

knn(k) = k

2
+

2 − m

2
+

3m + 1

2k
− (1 + m)1+ k−1

m

k · (1 + m)t
. (23)

Thus we have obtained the degree correlations for those nodes born at ti � 1. For the initial
two nodes, each has a degree of k = 1 + mt , and it is easy to obtain

knn(k = 1 + mt) = 1

k

⎛
⎝ t ′i=t∑

t ′i=1

mk(t ′i , t) + k(0, t)

⎞
⎠

= k

2
+

2 − m

2
+

m − 1

2k
. (24)

From equations (23) and (24), it is obvious that for a large network (i.e. t → ∞), knn(k) is
approximately a linear function of k, which shows that the network is assortative.

4. Eigenvalues and eigenvectors of the adjacency matrix

As known from section 2, there are 2(m + 1)t vertices in Ut . We denote by Vt the vertex set
of Ut , i.e., Vt = {v1, v2, . . . , v2(m+1)t }. Let At = [aij ] be the adjacency matrix of network Ut ,
where aij = aji = 1 if nodes i and j are connected, aij = aji = 0 otherwise. For an arbitrary
graph, it is generally difficult to determine all eigenvalues and the corresponding eigenvectors
of its adjacency matrix, but below we will show that for Ut one can settle this problem.

4.1. Eigenvalues

We begin by studying the eigenvalues of Ut . By construction, it is easy to find that the
adjacency matrix At satisfies the following relation:

At =

⎛
⎜⎜⎜⎜⎜⎝

At−1 I I · · · I

I 0 0 · · · 0

I 0 0 · · · 0

...
...

...
...

I 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

(m+1)×(m+1)

(25)

where each block is a 2(m + 1)t−1 × 2(m + 1)t−1 matrix and I is the identity matrix. Then, the
characteristic polynomial of At is

Pt(x) = det
(
xI − At

)

= det

⎛
⎜⎜⎜⎜⎜⎝

xI − At−1 −I −I · · · −I

−I xI 0 · · · 0

−I 0 xI · · · 0

...
...

...
...

−I 0 0 · · · xI

⎞
⎟⎟⎟⎟⎟⎠

= (det(xI))m · det

⎛
⎜⎜⎜⎜⎜⎜⎝

(
x − m

x

)
I − At−1 0 0 · · · 0

− 1
x

I I 0 · · · 0

− 1
x

I 0 I · · · 0

...
...

...
...

− 1
x

I 0 0 · · · I

⎞
⎟⎟⎟⎟⎟⎟⎠ , (26)

7
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where the elementary operations of matrix have been used. According to the results in [68],
we have

Pt(x) = (det(xI))m · det

((
x − m

x

)
I − At−1

)
. (27)

Thus, Pt(x) can be written recursively as follows:

Pt(x) = x2m(m+1)t−1 · Pt−1(ϕ(x)), (28)

where ϕ(x) = x − m
x

. This recursive relation given by equation (28) is very important, from
which we will determine the complete eigenvalues of Ut and their corresponding eigenvectors.
Note that Pt−1(x) is a monic polynomial of degree 2(m + 1)t−1, then the exponent of m

x
in

Pt−1(ϕ(x)) is 2(m + 1)t−1, and hence the exponent of factor x in Pt(x) is

2m(m + 1)t−1 − 2(m + 1)t−1 = 2(m − 1)(m + 1)t−1. (29)

Consequently, 0 is an eigenvalue of At , and its multiplicity is 2(m − 1)(m + 1)t−1.
Note that Ut has 2(m + 1)t eigenvalues. We represent these 2(m + 1)t eigenvalues as

λt
1, λ

t
2, . . . , λ

t
2(m+1)t , respectively. For convenience, we presume λt

1 � λt
2 � · · · � λt

2(m+1)t ,
and denote by AEt the set of these eigenvalues, i.e. AEt = {

λt
1, λ

t
2, . . . , λ

t
2(m+1)t

}
. All the

eigenvalues in set AEt can be divided into two parts. According to the above analysis, λ = 0
is an eigenvalue with multiplicity 2(m − 1)(m + 1)t−1, which provide parts of the eigenvalues
of At . We denote by AE

′
t the set of eigenvalues 0 of Ut , i.e.

AE
′
t = {0, 0, 0, . . . , 0, 0︸ ︷︷ ︸

2(m−1)(m+1)t−1

} (30)

It should be noted that here we neglect the distinctness of elements in the set. The remaining
4(m + 1)t−1 adjacency eigenvalues of Ut are determined by the equation Pt−1(ϕ(x)) = 0.
Let these 4(m + 1)t−1 eigenvalues be λ̃t

1, λ̃
t
2, . . . , λ̃

t
4(m+1)t−1 , respectively. For convenience,

we presume λ̃t
1 � λ̃t

2 � · · · � λ̃t
4(m+1)t−1 , and denote by AE∗

t the set of these eigenvalues,

i.e. AE∗
t = {

λ̃t
1, λ̃

t
2, . . . , λ̃

t
4(m+1)t−1

}
. Therefore, the eigenvalue set of Ut can be expressed as

AEt = AE
′
t ∪ AE∗

t .
From equation (28), we have that for an arbitrary element in AEt−1, say λt−1

i ∈ AEt−1,
both solutions of x − m

x
= λt−1

i are in AE∗
t . In fact, equation x − m

x
= λt−1

i is equivalent to

x2 − λt−1
i x − m = 0. (31)

We use notations λ̃t
i and λ̃t

i+2(m+1)t−1 to represent the two solutions to equation (31), since they
provide a natural increasing order of the eigenvalues of Ut , which can be seen from below
argument. Solving this quadratic equation, its roots are obtained to be λ̃t

i = r1
(
λt−1

i

)
and

λ̃t
i+2(m+1)t−1 = r2

(
λt−1

i

)
, where the functions r1(λ) and r2(λ) satisfy

r1(λ) = 1
2

(
λ −

√
λ2 + 4m

)
, (32)

r2(λ) = 1
2

(
λ +

√
λ2 + 4m

)
. (33)

Substituting each adjacency eigenvalue of Ut−1 into equations (32) and (33), we can obtain
the set AE∗

t of eigenvalues of Ut . Since AE0 = {−1, 1}, by recursively applying the functions
provided by equations (32) and (33), the eigenvalues of Ut can be determined completely.

It is obvious that both r1(λ) and r2(λ) are monotonously increasing functions. On the other
hand, since r1(λ) = 1

2

(
λ −

√
λ2 + 4m

) = −2m

(λ+
√

λ2+4m)
, so r1(λ) < 0. Similarly, we can show

that r2(λ) > 0. Thus for arbitrary fixed λ′, r1(λ) < r2(λ
′) holds for all λ. Then we have the

8
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Figure 2. The distribution of eigenvalues Pt (λ) defined as the ratio between the multiplicity of
eigenvalue λ and the network order Nt .

following conclusion: if the eigenvalues set of Ut−1 is AEt−1 = {
λt−1

1 , λt−1
2 , . . . , λt−1

2(m+1)t−1

}
,

then solving equations (32) and (33) we can obtain the eigenvalue set AE∗
t of Ut to be

AE∗
t = {λ̃t

1, λ̃
t
2, . . . , λ̃

t
4(m+1)t−1}, where λ̃t

1 � λ̃t
2 � · · · � λ̃t

2(m+1)t−1 < 0 < λ̃t
2(m+1)t−1+1 �

λ̃t
2(m+1)t−1+2 � · · · � λ̃t

4(m+1)t−1 . Recall that AE
′
t consists of 2(m − 1)(m + 1)t−1 elements, all

of which are 0, so we can easily get the eigenvalue set of Ut to be AEt = AE∗
t ∪ AE

′
t .

For above arguments, we can easily see that for the case of m = 1, all the 2t+1 eigenvalues
of Ut are different, which is an interesting feature and has less been previously reported in
other network models thus may have some far-reaching consequences. For other m > 1, some
eigenvalues multiple. In figure 2 we plot the distribution of eigenvalues for two cases: m = 2
and m = 3. It is observed that different from the uniform distribution of m = 1 case, for
m > 1, the distribution of eigenvalues exhibits the form of peaks.

9
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4.2. Eigenvectors

Similar to the eigenvalues, the eigenvectors of At follow directly from those of At−1. Assume
that λ is an arbitrary eigenvalue of Ut , whose corresponding eigenvector is v ∈ R2(m+1)t ,
where R2(m+1)t represents the 2(m+1)t -dimensional vector space. Then we can solve equation
(λI − At )v = 0 to find the eigenvector v. We distinguish two cases: λ ∈ AE∗

t and λ ∈ AE
′
t ,

which will be addressed in detail as follows.
For the first case λ ∈ AE∗

t , we can rewrite the equation (λI − At )v = 0 as⎛
⎜⎜⎜⎜⎜⎝

λI − At−1 −I −I · · · −I

−I λI 0 · · · 0

−I 0 λI · · · 0

...
...

...
...

−I 0 0 · · · λI

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

v1

v2

v3

...

vm+1

⎞
⎟⎟⎟⎟⎟⎠ = 0, (34)

where vector vi (1 � i � m + 1) are components of v. Equation (34) leads to the following
equations:

(λIt−1 − At−1)v1 − v2 − · · · − vm+1 = 0, (35)

− v1 + λvi = 0 (2 � i � m + 1). (36)

Resolve equation (36) to find

vi = 1

λ
v1 (2 � i � m + 1). (37)

Substituting equation (37) into (35) we have[(
λ − m

λ

)
I − At−1

]
v1 = 0, (38)

which indicates that v1 is the solution to equation (35) while vi (2 � i � m + 1) are uniquely
decided by v1 via equation (37).

From equation (28) in the preceding subsection, it is clear that if λ is an eigenvalue of
adjacency matrix At , then f (λ) = λ − m

λ
must be one eigenvalue of At−1. (Recall that

if λ = λ̃t
i ∈ AE∗

t , then ϕ
(
λ̃t

i

) = λt−1
i for i � 2(m + 1)t−1, or ϕ

(
λ̃t

i

) = λi−2(m+1)t−1 for
i > 2(m + 1)t−1). Thus, equation (38) together with equation (28) shows that v1 is an
eigenvector of matrix At−1 corresponding to the eigenvalue λ − m

λ
determined by λ, while

v =

⎛
⎜⎜⎜⎜⎜⎝

v1

v2

v3

...

vm+1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

v1
1
λ
v1

1
λ
v1

...
1
λ
v1

⎞
⎟⎟⎟⎟⎟⎟⎠ (39)

is an eigenvector of At corresponding to the eigenvalue λ.
Since for the initial graph U0, its adjacency matrix A0 has two eigenvalues −1 and 1 with

respective eigenvectors (1,−1)� and (1, 1)�. By recursively applying the above process, we
can obtain all the eigenvectors corresponding to λ ∈ AE∗

t .

10
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For the second case of λ ∈ AE
′
t , where all λ = 0, the equation (λI − At )v = 0 can be

recast as ⎛
⎜⎜⎜⎜⎜⎝

−At−1 −I −I · · · −I

−I 0 0 · · · 0

−I 0 0 · · · 0

...
...

...
...

−I 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

v1

v2

v3

...

vm+1

⎞
⎟⎟⎟⎟⎟⎠ = 0, (40)

where vector vi (1 � i � m + 1) are components of v. Equation (40) leads to the following
equations:

v1 = 0, (41)

v2 + v3 + · · · + vm+1 = 0. (42)

From equation (41), v1 is a zero vector, and we denote by vi,j the j th component of the
column vector vi . Equation (42) gives us the following equations:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
v2,1 + v3,1 + · · · + vm+1,1 = 0

v2,2 + v3,2 + · · · + vm+1,2 = 0

...
...

...
...

...
...

v2,2(m+1)t−1 + v3,2(m+1)t−1 + · · · + vm+1,2(m+1)t−1 = 0.

The set of all solutions to any equation above consists of vectors that can be written as⎛
⎜⎜⎜⎜⎜⎝

v2,j

v3,j

v4,j

...

vm+1,j

⎞
⎟⎟⎟⎟⎟⎠ = k1,j

⎛
⎜⎜⎜⎜⎜⎝

−1

1

0

...

0

⎞
⎟⎟⎟⎟⎟⎠ + k2,j

⎛
⎜⎜⎜⎜⎜⎝

−1

0

1

...

0

⎞
⎟⎟⎟⎟⎟⎠ + · · · + km−1,j

⎛
⎜⎜⎜⎜⎜⎝

−1

0

0

...

1

⎞
⎟⎟⎟⎟⎟⎠ , (43)

where k1,j , k2,j , . . . , km−1,j are any real numbers. From equation (43), the solutions for all
the vectors vi (2 � i � m + 1) can be rewritten as⎛
⎜⎜⎜⎜⎜⎝

v�
2

v�
3

v�
4
...

v�
m+1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

−1 −1 · · · −1

1 0 · · · 0

0 1 · · · 0

...
...

...

0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

k1,1 k1,2 · · · k1,2(m+1)t−1

k2,1 k2,2 · · · k2,2(m+1)t−1

k3,1 k3,2 · · · k3,2(m+1)t−1

...
...

...

km−1,1 km−1,2 · · · km−1,2(m+1)t−1

⎞
⎟⎟⎟⎟⎟⎠ , (44)

where ki,j (1 � i � m − 1; 1 � j � 2(m + 1)t−1)) are arbitrary real numbers. According to
equation (44), we can obtain the eigenvector v corresponding to the eigenvalue 0. Moreover,
it is easy to see that the dimension of the eigenspace of matrix At associated with eigenvalue
0 is 2(m − 1)(m + 1)t−1.

5. Conclusion and discussion

In conclusion, we have studied a family of deterministic models for the uniform recursive tree,
which we name the deterministic uniform recursive trees that are constructed in a recursive
way. The DURTs are in fact deterministic variants of the intensively studied random uniform
recursive tree. We have presented an exhaustive analysis of various structural properties of the
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DURTs, and obtained the precise solutions for these features that include degree distributions,
average path length, betweenness distribution and degree correlations. Aside from their
deterministic structures, the obtained structural characteristics of the DURTs are similar to
those of the URT. Consequently, the DURTs may provide useful insight to the practices as the
URT.

Furthermore, by using the methods of linear algebra and graph theory, we have performed
a detailed analysis of the complete eigenvalues and their corresponding eigenvectors of the
adjacency matrix for the DURTs. We have fully characterized the spectral properties and
eigenvectors for the DURTs. We have shown that all the eigenvalues and eigenvectors of the
adjacency matrix for the DURTs can be directly determined from those for the initial network.
It is expected that the methods applied here can be extended to a larger type of deterministic
networks.
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